
u2200 vlDEo
HARDWARE

INTERRUPT

This article details how to use the video hardware interrupt on

the V2200 and gives three simple examples of its usefulness.

THE HARDWARE [NTERRUPT is a

very useful feature of a computer's capabil-
ity, with many different applications. The
usefulness comes from the ability to 'inter-
rupt'the normal flow of software execution,
diverting the operation of the CPU by ex-
ternal means. The CPU can then be made
to execute a separate, independent program
before returning to the original program
execution.

This description may sound like a

GOSUB call to a subroutine in Basic, or a

CALL to a subroutine in a machine code
program, but there is an important differ-
ence. The difference is that the interrupt
can occur asynchronously to the normal
program execution (that is, it can occur at
any time unrelated to the progress of nor-
mal program execution).

This capability is extremely useful when
the computer has to serve some external de-
vice which can't wait for an action by the
computer during normal program execu-
iion. Such devices range from a digital-to-

analogue converter (which must sample
data at strictly regular intervals), to a soft-
ware clock counter which needs to be incre-
mented by an external hardware clock
pulse. By using a hardware interrupt these
devices can be served almost immediately.
in the time it takes the CPU to complete the
current instruction.

The interrupt is called a hardware inter-
rupt because there is a special pin on the
CPU chip itself, which, when taken to
ground potential (low or zero), initiates the
interrupt sequence. This action is also per-
formed by some external hardware device.

The Y2200 uses a Z,80 CPU chip, which
has three different responses to this inter-
rupt signal depending on the interrupt mode
set in the internal interrupt register (IR).
Note that we__glg talking about the INT
case, not the NMI). For the YZ2O0 the in-
terrupt register is set to interrupt mode 1

.(by an IM1 instruction) during the initializa-
tion sequence.

The response to an interrupt in Interrupt

Steve Olney

Mode 1 is to complete the current instruc-
tion. save the program counter rcgister
(PCR) contents on the stack (allowing re-
sumption of execution at that point upon
returning from the interrupt) and then jump
to location 0038 HEX. This could be vierved
as a hardware version of the software
RST 38 instruction.

The VZ2OO video interrupt
Those of you who have access to a circuit

diagram of the V2200 will see that the inter-
rupt pin (pin 16 INT) of the Z,80 CPU is

connected to pin 37 (FS) of the 6847 vidco
controller chip. Reference to the 6847 data
sheets shows that pin 37 of the 6847 chip is
the video field sync output pin. This pin is
pulled low by the 6847 chip during the verti-
cal retrace period of the video output signal.
That is, the field sync output pin goes low
every 1/50 of a second (video frame rate of
50 per second) causing the 280 CPU to be
interrupted and diverted to location 0038
HEX every 20 ms.

Scrutiny of the machine code (in ROM)
at location 0038 HEX reveals a JUMP in-
struction to location 2EB8 HEX. This jump
is referred to as interrupt vector.

The machine code at 2EB8 HEX contains
several CALLs to various locations before
returning to the original program execution.
I haven't looked at these in detail. but most
likely they are concerned with cursor con-
trol and perhaps screen scrolling during
listing.

In any case, the code in which we are in-
terested is near the start of the code at 2EB8
HEX. The first CALL after saving affected
registers is to location 787D HEX. There
are two interesting points to note here. The
first is that location 787D HEX is in RAM,
and secondly, this is the memory location
referred to in the V2200 Technical Manual
(under System pointers) as the "interrupt
exit".

By PEEKing location 787D HEX (eg P

H"*,kllt-lr

I

ETI May 1985 - 99



L]3TING 1

HEX CODE MNEMONIC
F5 PUSH AF ; Save 'AF' register because we alter it
3E 2A LD A,zAH i Load 'A' register with code for '*'
3? lF 7g LD lTslFH),A; Put tt in the top right-hand Eorner of sEreen
F1 POP AF ; Re5tore 'AF' register
C9 RET ; Return

LISTING 2

tsg S= -32264 : F = S + 7 :' START AT ASS@ HeX
7BO FoR I = S TO F :' POKE THE a-BYTE MACHINE CoDE PRoGRAM
3Sg READ D :' INTO MEMORY STARTING AT ASSS HEX
4Bg PO!(E r, D : '
569 NEXT I
6g9 PORE 39846,A9 :' ENTER THE START ADDRESS OF THE I'IACHINE
796 PORE 36A47,128 :' CODE PROGRAM INTO INTERRUPT JUMP
aaa POKE 3S445,195 :' EXIT A7 7A2D BeX.
gss DAtA 745,62,42,55,31,rL2,24t,?Sri ' DECIMAL EQUTVALENT OF HEX

ry._:
HEX CODE MNEMONIC
F5 PUSH AF i save registers
CS PUSH BC ; He destroy
E5 PUSH HL i
34 38 7A LD A,17A3BH) ; load latch contents
A6 gA LD B,a ; bit counter
2L 18 7g LD AL,T6LAH ; start of sEreen display
17 LOOP RLA ; rotate into carry and test
39 g7 JR NC, ZERO ;
36 31 LD (HL) ,31H i output '1'
?3 INC HL ; adjust to next display position
1g FA DJNZ LOOP i 90 until all bits are done
1A gS JR EXIT ; exit if done
36 3A ZERO LD (HL),39H ; output 'g'
23 INC HL ; adjust to next screen positron
1g Fl DJNZ LOOP ; go until all bits are done
El EXIT POP HL ; exit
C1 POP BC i
F1 POP AF i
C9 RETURN i

LISTING 4

LSS S= -3?76A : F = S + 29 : 'START AT ASS@ HEX
zs6 FOR I = S To F :' POKE THE B-BYTE MACHINE CODE PRoGRAM
3Ag READ D :' INTO HEMORY STARTING A1 Aggg HEX
4gg P0KE I, D

5gg NEXT I
6gg PORE 39846,50 :' ENTER THE START ADDRESS OF THE MACHINE
7gg P0RE 3SS47,L2A :' CODE PROGRAT'! rNTO INTERRUPT JUMP
Bgg PoKE 3S445,195 :' EXIT AT 7A7D HeX,
9g9t DATA 245r 197,22?,54,39, tzS,6,A
16gg DAT A 33, 24, L L?, 23, 44,7,54, 49
11SS DATA 33, 16,?48,?4,5,54, 44,35
12Ag DATA r6,241,225, t93,241,2s1

PRINT PEEK[30845]) you should find it
contains 201 DECIMAL (0C9 HEX) which
is the 280 RETurn instruction.

Using the video interrupt
Let's just back up to summarize what

we've discussed so far. Every 20 ms the 280
CPU is interrupted by the 6847 video con-
troller chip. The interrupt mode (mode 1)
causes the Z,80 to jump to location 0038
HEX. From here execution jumps to 2EB8
HEX where a CALL to 787D HEX is en-
countered. Location 787D HEX (in RAM)
contains a RET instruction and so execution
returns immediately and continues until
2EDA HEX where a return from interrupt
instruction (RETI) is found. Execution is
now RETurned to the original program
flow.

Now, because location 787D HEX is in
RAM, we can change the RET instruction
at that location to a JUMP to some other
selected location. At this location we can
insert our own interrupt servicing code.

Here is a very simple example to illus-
trate this procedure. Starting at location
3450 HEX in the Basic ROM is a subroutine
which generates the 'beep' whenever you
press a key. We can alter location 787D,
7878 and 787F HEX to contain a JUMP to
3450 HEX to execute this 'beep' routine
every time a video interrupt occurs (every
20 ms).

To do this we POKE the following
machine code into memory starting at loca-
tion 787D HEX:

Hex Code Mnemonic
c3 50 34 JP 3450H

No/e: Remember location 787D HEX is
CALLed every 20 ms, so you must not alter
the RET at this location until you have ent-
ered a valid jump address in the following
two bytes. Otherwise the Z,80 will jump to
some indeterminate address depending on
what random data was contained in 787E
and 787F HEX.

The following strict order should be used:
POKE 30846,80 (POKE 50 HEX into

location 787E HEX)
POKE 30847,52 (POKE 34 HEX into

location 787F HEX)
POKE 30845,195 (POKE C3 HEX into

location 787D HEX)
Type in the above commands via the im-

mediate mode (without line numbers). The
text within the brackets should not be typed
in as it is for information only.

Once you have done this you should hear
an almost continuous beep from the internal
speaker. Notice that there is nothing which
interferes with this beeping. Well, almost
nothing, as will be explained a little later.
However, you can enter a Basic program as

normal (except for the distraction of the
beeping) and even RUN or LIST it. In fact.
you can do all the normal operations (ex-

100 - ETI May 1985



cept tape oPerations - see below) without
affecting the beeping. This is because the in-
terrupt has priority over other software ex-

ecution. So we see it is possible to have a

Basic program running in the 'foreground'
with a separate machine language Program
running in the 'background' being executed
at regular intervals.

To stop the beep all that is necessary is to
change the JUMP instruction (0C3 HEX) a-t

location 787D HEX back to a RET (0C9

HEX) by:
POKE 30845,201

Tape operations
As mentioned earlier, there is another ac-

tion which will disable the 'beep'. During
tape operations, interrupts are disabled to
ensure that accurate timing delays in the
tape function's machine code are not dis-

tuibed. So while you are CSAVEing'
CRUNning or CLOADing data to or from
tape the beeping will stop. However, once

the operation is over the interrupts are

enabled once again and the beeps return.
To enable the'beeP' again, enter -
POKE 30845,195

Note; Before typing the above, make sure

that locations 787E and 787F HEX contain
the correct jump address (3450 HEX)!

Non erasable video disPlaY
Next we'll look at an examPle which

shows how the video interrupt can be used

to put 'non-erasable' information on the
video screen.

Normally, any information displayed on
the screen can be overwritten, cleared or
scrolled off the screen, either during pro-
ffam execution or in the immediate execu-

iion mode. By using the video interrupt you

can display information which cannot be

overwritten.
The machine language source code is

shown in Listing 1.

Use the Basic prograrir shown in Listing 2

to enter and then to enable the machine
code program shown in Listing 1. 

-Affer you have entered Listing ?,
CSAVE ii before RUNning it. You should
see an '*' in the top right-hand corner of the

screen. Try to erase this by any means you

like and you will find the best you can do is

to erase it momentarily (in fact a maximum
of approximately 20 ms, the time taken be-

tween successive interrupts)' The only way

to erase the '*' is to disable the interrupt
itself, or to disable the machine code

program by:
POKE 30845,201

which POKEs a RET instruction (0C9

HEX) back into location 787D HEX.

Real-time system Pointer
display

When programming in Basic a useful fea-

ture would be to see a constantly updated
display of various system pointers (eg start

of program, end of program, start of free
spate etc) to aid in keeping track of the pro-
sress of these Parameters." To illustrate'this principle simply, we witl
display the contents of the output latch. A
coov of the latch contents is maintained at
toiatlon 7838 HEX (307779 decimal)' The
latch controls the following:

BIT FUNCTION

O speaker O/P #l see note below

1 unused

2 cassette O/P

3 mode control Mode 0 Mode 1

4 background colour green

5 speaker O/P #2 see note below

6 unused

7 unused

toggles according to data
otP

Nofe: During a key press 'beep' or execu-

tion of the SOUND command, the software
toseles bit 0 and bit 5. When it does this. it
firiilooks at the state of each bit and then

inverts that state. Normally each bit (0 and

5) are the complement of each other, and

the inversion of both at the same time gives

a'push-pull'like drive signal to the speater.
However, if both bits were the same, there
would be no differential change when they
are inverted, and so no output. You can

therefore disable the 'beep' and the
SOUND command by looking at both bits
and then POKEing a value into location
7838 HEX (30779 decimal) which makes

them equal. That is, if the contents of 7838
HEX are even, then POKE back into 7838
HEX a value equal to (contents + 1). Con-
versely, if the contents are odd, POKE back
a value of (contents - 1).

Getting back to the latch display - to in-
dicate the state of each bit, we will display a

'0' or '1' for each bit in the top right-hand
corner of the screen.

The machine language source code is
shown in Listing 3.

The Basic program in Listing 4 will enter
and enable the machine code program of
Listing 3. Note that Listing 4 is similar to
Listing 2, so if you have already entered
Listing 2 you can modify it to Listing 4.

Once again, enter the Basic program (List-
ing 4), and CSAVE it before RUNning it.
You should see the contents of the output
latch displayed in binary in the top right-
hand corner of the screen, reading from left
to right, starting with bit 7 across to bit 0'
Change the background colour (COLOR,0
and COLOR,t) and note the change in bit 4
in the display.

Gursor position Pointel
Edit line number 900 to:
900 DATA 245,197 ,229,58,166,t20,6, g

ReRUN the program.

This will display the horizontal cursor
position pointer (0-31) from location 78,4'6

HnX 1:OAS0 decimal). Use the left/right
cursor position arrows to move the cursor
and observe the display.

Basic program Poanters
Now edit line number 900 to:
900 DATA 245,t97,229,58,249,120,6, 6

ReRUN the program again.
This will display the LSB (Least Signifi-

cant Byte) of the 'end of Basic program'
pointer. Try adding extra lines to the Basic
program and note the change in the display.
For example, add the line:

15OO REM TEST
Note down the binary value displayed and

then edit line 1500 to:
l5OOITEST

Compare the new display value with the
previous value.- 

This exercise reveals that although the
short form remark symbol (') occupies two
screen spaces less than the long form REM
command, it needs two more program me'
mory spaces to store it than the long form!

What next?
These given examples are very simple

ones designed to illustrate the basic princi-
ple of using the video interrupt and do not
ihow the full potential of the technique. I
have written two programs which utilize this
technique in a more complex fashion. The
first of these is a real-time clock which is

controlled by the internal clock of the
YZZW. This gives a digital readout display
in the upper right-hand corner of the
screen. The real-time clock is implemented
entirely in software (no need for extra hard-
ware or modifications).

The second program demonstrates a

split-screen graphics mode with one part of
the screen having text and lo-res graphics,
with the remainder in hi-res graphics.

Other applications
These are but a few of the many possible

uses of the video interrupt. Other applica-
tions include:
. arcade games - synchronizing move-
ment wittr the video raster rate to give

smooth action. Mixed hi-res graphics and

text for scoring, simulating instrumentation
etc;
. stopwatch - event timer or lap-scorer;
I frequency counter - using the internal
V2200 clock to give the timing gate period;
and

. real-time control - using the V2200 as

a component in a control system, eg burglar
alarm.

The list could go on, as anything which
requires a reasonably accurate time-keeping
function or synchronization with the video
display, is a possible candidate. Which all
goes to show that it's not always rude to
interrupt! O

ETI May 1985 - 101


